
Summit & Beyond for the Intensity Frontier

Jiqun Tu1,*

1Columbia University

2019 Lattice X Intensity Frontier Workshop, BNL
September 24, 2019

*This is a combined work of the RBC & UKQCD collaborations. Major contributions
to this work by Chulwoo Jung, Robert Mawhinney and David Murphy. Substantial
hardware and software support for QUDA implementation from Kate Clark (NVIDIA).

Target Ensemble Evolution 2/35

RBC/UKQCD ensembles with 2+1 flavor Möbius domain wall fermion
and Iwasaki gauge action.

Ens. β L3 × T × Ls mπ[MeV] mπL a−1[GeV]

48I 2.13 483 × 96 × 24 139.1(4) 3.8633(63) 1.7293(36)

64I 2.25 643 × 128 × 12 139.0(5) 3.7778(84) 2.3572(69)

96I 2.31 963 × 192 × 12 ≃ 141 ≃ 4.88 ≃ 2.77

0.530

0.535

0.540

0.545

0.550

0.555

0.560

0.565

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

← a96I ' 0.071 fm

B
K

[(/q
, /q
),
µ
=

3
G
eV

]

a2[GeV−2]

48I
64I

0.530

0.535

0.540

0.545

0.550

0.555

0.560

0.565

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Light Quarks: u and d.
detD detD = det(D†D) =

∫ [
dϕ†
][

dϕ
]
exp

[
− ∥D−1ϕ∥2

]

Fermion Determinants 4/35

Evolution is dominated by solution of the Dirac equations Ax = b (under
the even-odd preconditioning):(

Mee Meo

Moe Moo

)(
ψe

ψo

)
=

(
ϕe

ϕo

)
,

with the underlying matrix

A = D†
precDprec =

[
1−M−1

ee MeoM−1
oo Moe

]†[1−M−1
ee MeoM−1

oo Moe
]
.

These equations are solved with the conjugate gradient algorithm.

Conjugate Gradient (CG) 5/35

Algorithm 1 Conjugate Gradient Ax = b
r0 = b− Ax0
p0 = r0
k = 0
while have not converged do

αk = ⟨rk, rk⟩/⟨pk,Apk⟩ ← matrix multiplication/dslash
xk+1 = xk + αkpk

rk+1 = rk − αkApk
βk = ⟨rk+1, rk+1⟩/⟨rk, rk⟩
pk+1 = rk+1 + βkpk

k = k + 1
end while

Summit at ORNL 6/35

Figure 1: Source: New York Times.

Summit at ORNL 7/35

• The Summit machine at Oak Ridge National Laboratory (ORNL),
with a peak double precision performance of ≃ 200 peta-flops, is
currently the fastest supercomputer in the world.

• It is one of the pre-exascale machines for DoE’s exascale computing
project (ECP).

• 6 Tesla V100 GPUs per node with a total of 4608 nodes. Our
proposed jobs run on 1024 nodes (6096 GPUs) at a time.

• CPS (Columbia Physics System) with QUDA [1109.2935]
(https://github.com/lattice/quda) solvers.

https://github.com/lattice/quda

CG on Summit 8/35

A brief summary: communication is the bottleneck.

supply demand with plain CG

compute flops (fp32) 15.7 tera-flops 3965 mega-ops

memory bandwidth 900 GB/sec 276.4 MB

network bandwidth 8.3 GB/sec 17.3 MB

compute/memory 17.4 ops/byte 14.3 ops/byte (0.8×supply)

network/memory 0.009 0.062 (7.0×supply)

Table 1: Compute flops, memory and network bandwidth demand versus
supply for one iteration of CG on Summit. Note that this is only an illustration
that does not take into account the control flow structure containing the
computing, memory loading/storing and communication.

Preconditioned CG 9/35

Algorithm 2 Preconditioned Conjugate Gradient Ax = b

r0 = b− Ax0
p0 = z0 = M−1r0
k = 0
while have not converged do

αk = ⟨rk, zk⟩/⟨pk,Apk⟩
xk+1 = xk + αkpk

rk+1 = rk − αkApk ← matrix multiplication/dslash, comm.
zk+1 = M−1rk+1 ← preconditioning solve, better no comm.
βk = ⟨zk+1, rk+1⟩/⟨zk, rk⟩
pk+1 = zk+1 + βkpk

k = k + 1
end while

Multisplitting Algorithm 10/35

For reference see [D. O’leary 1985].

Ax = b : Alxl + Asxs + Arxr = bs

Al As Ar

xr

xs

xl

bs

× =

A × x = b

locally
stored on
processor

Multisplitting Algorithm 11/35

Solve
Alxl + Asxs + Arxr = bs,

Rearrange into an iterative form

Asx(k+1)
s = bs − Alx(k)l − Arx(k)r

= bs −
(

Ax(k) − Asx(k)s

)
= r(k) + Asx(k)s ≡ b̂(k)

s

For each cycle,
• use communication to calculate the right-hand-side b̂s.
• solve Asx(k+1)

s = b̂(k)
s locally.

• the updated solution x(k+1)
s will be used to ready the next cycle.

Get As for each node by chopping off all off-block-diagonal terms:
applying zero Dirichlet boundary condition.

The Normal Operator 12/35

• 4 hopping terms in the normal operator:

A = D†
precDprec =

[
1−M−1

ee MeoM−1
oo Moe

]†[1−M−1
ee MeoM−1

oo Moe
]
.

• Need to apply Dirichlet boundary condition on A instead of the
individual hopping terms Meo/oe: the snake terms, terms that hop
out of the boundary and hop back.

As a Preconditioner 13/35

Multisplitting preconditioned CG (MSPCG, effectively the same as
additive Schwarz) [1811.08488].

A M =
󰁐

s

As

As a Preconditioner 14/35

10−10

10−09

10−08

10−07

10−06

10−05

10−04

0 5000 10000 15000 20000 25000 30000 35000

re
si

du
al

%
=

√ r2
/s

2

outer iteration

2 inner iterations
3 inner iterations
4 inner iterations
5 inner iterations
6 inner iterations
7 inner iterations
8 inner iterations

unpreconditioned CG

Figure 2: Residual versus (outer) iteration of the MSPCG on Summit solving
Dirac equation M†Mx = M†y to the accuracy of 10−10 on the 963 × 192 × 12,
2+1 flavor Möbius domain wall fermion, a−1 ≃ 2.77 GeV lattice with physical
pion mass. y is a gaussian random source vector.

Tuning the Solver 15/35

• We observe that the number of iterations for outer CG is greatly
reduced even if the inner preconditioner is solved in a sloppy way,
e.g. iterating only 3-6 times.

• Our observation is supported by several theoretical works, say,
[G. Golub 1999] and [V. Simoncini 2003].

• Thus the number of preconditioner solve is a parameter that can be
tuned to achieve maximum speed up.

the Polak-Ribière (PR) formula and a non-trivial reliable update
scheme is needed to insure the smooth convergence of such a mixed
precision (double + half) solver with inexact preconditioner.

Fletcher-Reeves vs. Polak-Ribière 16/35

Algorithm 3 Preconditioned Conjugate Gradient Ax = b

r0 = b− Ax0
p0 = z0 = M−1r0
k = 0
while have not converged do

αk = ⟨rk, zk⟩/⟨pk,Apk⟩
xk+1 = xk + αkpk

rk+1 = rk − αkApk ← matrix multiplication/dslash, comm.
zk+1 = M−1rk+1 ← preconditioning solve, better no comm.
βk = ⟨zk+1, rk+1⟩/⟨zk, rk⟩FR ← βk = ⟨zk+1, rk+1 − rk⟩/⟨zk, rk⟩PR

pk+1 = zk+1 + βkpk

k = k + 1
end while

A Reliable Update Scheme 17/35

• It is well-known that during CG the accumulated residual differs
significantly from the true residual.

rn+1 = rn − αnApn ̸= r̂n = b− Axn

• With mixed precision solver the difference is even larger. Reliable
updates are needed to correct the lower precision accumulated
residual calculated with higher precision true residual without
destroying the orthogonality of the Krylov space.

A Reliable Update Scheme 18/35

• A reliable update scheme with explicit restarts consists of several
cycles: at the beginning of each cycle the true residual is calculated
with higher precision before CG iterations are performed based on a
new Krylov space.

• A sophisticated reliable update scheme [H. Van der Vorst 2000] is
implemented to estimate the deviation with

dk = dk−1 + ϵl (∥A∥ · ∥xk∥+ ∥rk∥)

and an higher precision correlation is made if

dk >
√
ϵl∥rk∥

while the Krylov space is kept.

A Reliable Update Scheme 19/35

10−10

10−08

10−06

10−04

10−02

10+00

0 2000 4000 6000 8000 10000 12000 14000

re
si

du
al

%
=

√ r2
/s

2

outer iteration

reliable update with restarts

the sophisticated reliable update

Figure 3: Comparison between reliable update using restarts with the more
sophisticated reliable update.

MSPCG on Summit 20/35

A brief summary: communication is no longer the sole bottleneck.

supply demand with MSPCG

compute flops (fp32) 15.7 tera-flops 3965×12 mega-ops

memory bandwidth 900 GB/sec 276.4×12 MB

network bandwidth 8.3 GB/sec 17.3 MB

compute/memory 17.4 ops/byte 14.3 ops/byte (0.8×supply)

network/memory 0.009 0.062 (7.0/12×supply)

Table 2: Compute flops, memory and network bandwidth demand versus
supply for one iteration of MSPCG on Summit. Note that this is only an
illustration that does not take into account the control flow structure
containing the computing, memory loading/storing and communication.

Maximize GPU Performance on Summit 21/35

Exploit the programmable L1 cache (share memory) in CUDA to reduce
memory traffic.

t
h
r
e
a
d
I
d
x
.
y
×

sp
in
(4
)

pack all 5th dimension sites on threadIdx.x to this block (blockDim.y = Ls)

Distribute the 4d-spatial indices into blocks (blockDim.x)

threadIdx.x × color(3) × complex(2)

4d store

5d op.

Maximize GPU Performance on Summit 22/35

Use tensor cores to perform the fifth dimension matrix multiplications,
e.g. M−1

5 . Motivations:
• 125 tera-flops (compared to 15.7 with fp32) peak fp16 performance

for dense matrix multiplication.
• Computation takes a large portion of the total time.
• Data is already loaded in L1 cache so almost zero latency and

memory traffic.
• M−1

5 is 50% dense.
“Tensor cores provide a huge boost to convolutions and matrix
operations.”

=

M−1
5 , column major input vector, row major output vector, row major

L
s
×

sp
in

Ls × spin 4d-spatial block × color × complex 4d-spatial block × color × complex

×

tensor core (IEEE fp16): ×16

16

+ × + × =

2−28 2−26 2−24 2−22 2−20 2−18 2−16 2−14 2−12 2−10 2−8 2−6 2−4 2−2 20 22 24 26 28 210 212 214 216 218 220 222 224 226 228

original numbers

scaled numbers

IEEE fp16

fp16 normal numbersubnormal

Scale numbers in the block to have as
many numbers in the fp16 normal num-
ber range as possible while the largest
number is still less than the limit (so we
don’t end up with a bunch of infs). On
GPU this needs a block-level reduction
to find the largest number.

6.1035× 10−5 655045.9605× 10−8

nodes inner iter. (outer) iter. r.u. performance/node time speed up

256

− 42133 471 4.66 486.3

1.10×
05 16903 195 1.56(01)/5.45(35)/37.29(53) 456.0
06 14860 173 1.56(01)/5.51(31)/37.60(58) 442.6
07 13787 161 1.56(01)/5.48(28)/37.49(60) 460.2
08 12922 151 1.56(01)/5.44(26)/37.55(63) 469.5

512

− 42427 474 3.85 296.6

1.13×
05 17625 203 1.26(01)/4.54(37)/36.21(52) 271.0
06 15425 179 1.27(01)/4.55(33)/36.26(57) 262.1
07 14409 168 1.26(01)/4.57(30)/36.39(60) 268.3
08 13597 159 1.27(01)/4.53(28)/36.35(63) 276.0

1024

− 42482 474 2.93 195.2

1.22×
05 18250 210 1.00(01)/3.68(34)/34.62(45) 183.3
06 15959 185 1.01(01)/3.68(35)/34.79(54) 159.7
07 14985 174 1.01(01)/3.68(32)/35.06(58) 163.6
08 14287 167 1.00(01)/3.69(29)/34.76(61) 169.1

Table 3: Strong scaling of the MSPCG on Summit. Times are in seconds. r.u.
= reliable updates. Perf. are in tera-flops. For MSPCG perf. is given in format
of precise(double)/sloppy(half)/precondition(half) dslashes (percentage).

Wrap up for MSPCG 25/35

• 20 peta-flops of sustained solver performance on Summit with 1024
nodes.

• MSPCG provides a way to trade local memory bandwidth and
flops for inter-node communication. Compared to current number
it would bring more significant speed up if former becomes even
more cheaper than the later, which seems to be the consensus trend.

• “The current trend in leadership computer systems is for individual
compute nodes to attain denser and denser floating-point capability,
resulting in systems with fewer, more floating point capable nodes.
At the same time, interconnect speeds have grown more slowly,
which can present challenges for strong-scaling problems such as
gauge generation.” – [1904.09725]

Wrap up for MSPCG 26/35

We do not yet know the specifications for the three exascale mathines
(Aurora at ANL, Frontier at ORNL and El Capitan at LLNL) but we can
compare Titan at ORNL with Summit.

Titan (2010) Summit (2018) factor

compute flops (fp32) [tera-flops] 4.0 94.2 23

memory bandwidth [TB/sec] 0.24 5.40 22

network bandwidth [GB/sec] 25 50 2

Table 4: For Titan numbers see https://www.olcf.ornl.gov/wp-content/
uploads/2013/02/Titan_Architecture_1-JL.pdf. For Summit numbers see
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/
summit-user-guide/.

https://www.olcf.ornl.gov/wp-content/uploads/2013/02/Titan_Architecture_1-JL.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2013/02/Titan_Architecture_1-JL.pdf
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/

Heavy Quark: s
detD = det(D†D)1/4(D†D)1/4 =

∫ [
dϕ†
][

dϕ
]
exp

[
− ∥(D†D)−1/4ϕ∥2

]

Rational Hybrid Monte Carlo (RHMC) 28/35

The traditional approach: form rational approximation

x−p ≃ α0 +
∑

k

αk
x + βk

and compute the single flavor determinant

det

[
D(m1)

D(m2)

]
=

{
det

[
D†D(m1)

D†D(m2)

]}1/2

with multishift CG allows D†D + βk to be inverted for all k
simultaneously: only one dslash is needed for each iteration for all the
shifts.

Rational Hybrid Monte Carlo (RHMC) 29/35

Problems on Summit:
• Dslash is cheap on GPU: CPU force calculations for the shifts

becomes the bottleneck.
• Mixed precision (double+half) multishift CG loses precision for the

shifts: the reliable update/defect correction scheme in plain CG does
not apply to the shifts. Consequence: takes long time to refine the
solutions for the shifted inversions.

Exact One Flavor Algorithm (EOFA) 30/35

• Idea: Use Schur determinant identity applied to spin structure of D
to factorize

det

[
D(m1)

D(m2)

]
=

1
det(H1)

· 1
det(H2)

with H1 and H2 hermitian and positive-definite [1403.1683].
• Benefits:

• Minimal CPU force calculation overhead;
• No multishift CG needed;
• Easier to add Hasenbusch masses to tune HMC.

Exact One Flavor Algorithm (EOFA) 31/35

Dslash structure is similar to the plain MDWF one [1706.05843]:

M̃ee(m1,m2,m3) = Mee(m1)±βP±|u±⟩⟨v±|.

From Sherman-Morrison formula, with M−1
5 = M−1

5+P+ + M−1
5−P−,

[
M̃ee

]−1
=
[
Mee ± βP±|u±⟩⟨v±|

]−1
= M−1

ee ∓P±
|x±⟩⟨y±|

1± ⟨v±|x±⟩
,

where
|x±⟩ = βM−1

5±|u±⟩, |y±⟩ = M−†
5±|v±⟩.

Exact One Flavor Algorithm (EOFA) 32/35

• The original dslash framework in QUDA is extended to include the
additional term for EOFA.

• The programmable L1 cache (shared memory) on the GPU is fully
utilized and the additional term adds negligible overhead.

• EOFA speeds up the heavy quark (single flavor) part of the evolution
by a factor of 4.

heavy quark (EOFA) 18.2%

light quark (quotient) 73.9%

gauge 7.2%

total time (512 nodes) 6328 seconds, 900 node-hour

Table 5: Achieved timing of one trajectory of the target lattice generation on

Summit.

Current Progress 33/35

0 100 200 300 400 500 600
-20

-10

0

10

20

30

runavg(20) Topological Charge
1/a ~(2.8) Gev

Current Progress 34/35

0 100 200 300 400 500 600
2.32

2.34

2.36

2.38

2.4
w0

0 100 200 300 400 500 600
1.96

1.97

1.98

1.99

2

2.01

2.02

sqrt(t0)Wilson flow
1/a 2.8Gev 96

3
192 Physical

Beyond Summit 35/35

• Compared to the 2.77 GeV 96I lattice a 3.5 GeV lattice that includes
the charm quark increases generation cost by a factor of

(3.5/2.77)4(volume)+5(c.s.d.) ≃ 10.

• With MSPCG and potential algorithmic improvements in fighting
against critical slowing down, this factor of 10 will likely be
realized on the exascale machines.

0.530

0.535

0.540

0.545

0.550

0.555

0.560

0.565

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

← a96I ' 0.071 fm

← a128I ' 0.056 fm

B
K

[(/q
, /q
),
µ
=

3
G
eV

]

a2[GeV−2]

48I
64I

0.530

0.535

0.540

0.545

0.550

0.555

0.560

0.565

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

